## Depletion Width of a PN Junction

Consider a pn junction below. Doping concentrations are $N_{\mathrm{A}}$ and $N_{\mathrm{D}}$ in the pand n-region, respectively. We apply the full depletion approximation and assume the abrupt transition at the pn junction. Assume the depletion widths for the p - and n -regions are $x_{\mathrm{p}}$ and $x_{\mathrm{n}}$, respectively. The dielectric constant for this semiconductor is $\varepsilon_{\mathrm{s}}$. The build-in potential is $V_{\mathrm{bi}}$. Prove that the depletion width is

$$
W=x_{p}+x_{n}=\sqrt{\frac{2 \varepsilon_{s}}{q}\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right) V_{b i}}
$$



In the depletion region, the charge concentration $Q(x)$ is

$$
\begin{cases}Q(x)=-N_{A} & \text { for } 0<x<x_{p} \\ Q(x)=+N_{D} & \text { for } x_{p}<x<x_{p}+x_{n}\end{cases}
$$

Outside the junction $(x<0$ and $x>W), Q(x)=0$

Based on the charge balance, we have

$$
N_{A} x_{p}=N_{D} x_{n}
$$

And because

$$
W=x_{p}+x_{n}
$$

We have

$$
\left\{\begin{array}{l}
x_{p}=\frac{N_{D}}{N_{A}+N_{D}} W \\
x_{n}=\frac{N_{A}}{N_{A}+N_{D}} W
\end{array}\right.
$$

Based on the Gauss's Law, we have

$$
\frac{\partial E}{\partial x}=\frac{q}{\varepsilon_{s}} Q(x)
$$

We can get the electric field $E(x)$

$$
\left\{\begin{aligned}
E(x) & =-\int_{0}^{x} \frac{q}{\varepsilon_{s}} N_{A} d x & & \\
& =-\frac{q}{\varepsilon_{s}} N_{A} x & & \text { for } 0<x<x_{p} \\
E(x) & =\int_{0}^{x} \frac{q}{\varepsilon_{s}} Q(x) d x & & \\
& =-\int_{0}^{x_{p}} \frac{q}{\varepsilon_{s}} N_{A} d x+\int_{x_{p}}^{x} \frac{q}{\varepsilon_{s}} N_{D} d x & & \\
& =-\frac{q}{\varepsilon_{s}} N_{A} x_{p}+\frac{q}{\varepsilon_{s}} N_{D}\left(x-x_{p}\right) & & \text { for } x_{p}<x<x_{p}+x_{n}
\end{aligned}\right.
$$

And the electric field $E(x)$ is the gradient of the electric potential $V(x)$

$$
\frac{\partial V}{\partial x}=-E(x)
$$

We can get the potential $V(x)$

$$
\begin{array}{rlrl}
V(x) & =-\int_{0}^{x}\left(-\frac{q}{\varepsilon_{s}} N_{A} x\right) d x & & \text { for } 0<x<x_{p} \\
& =\frac{1}{2} \frac{q}{\varepsilon_{s}} N_{A} x^{2} & \\
V(x) & =-\int_{0}^{x} E(x) d x & \\
& =-\int_{0}^{x_{p}}\left(-\frac{q}{\varepsilon_{s}} N_{A} x\right) d x-\int_{x_{p}}^{x}\left(-\frac{q}{\varepsilon_{s}} N_{A} x_{p}+\frac{q}{\varepsilon_{s}} N_{D}\left(x-x_{p}\right)\right) d x & \\
& =-\frac{1}{2} \frac{q}{\varepsilon_{s}}\left(N_{A}+N_{D}\right) x_{p}^{2}+\frac{q}{\varepsilon_{s}}\left(N_{A}+N_{D}\right) x_{p} x-\frac{1}{2} \frac{q}{\varepsilon_{s}} N_{D} x^{2} & \text { for } x_{p}<x<x_{p}+x_{n}
\end{array}
$$

Here we assume $V(x=0)=0$, so $V\left(x=W=x_{\mathrm{p}}+x_{\mathrm{n}}\right)=V_{\mathrm{bi}}$

We combine

$$
V_{b i}=-\frac{1}{2} \frac{q}{\varepsilon_{s}}\left(N_{A}+N_{D}\right) x_{p}^{2}+\frac{q}{\varepsilon_{s}}\left(N_{A}+N_{D}\right) x_{p} W-\frac{1}{2} \frac{q}{\varepsilon_{s}} N_{D} W^{2}
$$

And

$$
\left\{\begin{array}{l}
x_{p}=\frac{N_{D}}{N_{A}+N_{D}} W \\
x_{n}=\frac{N_{A}}{N_{A}+N_{D}} W
\end{array}\right.
$$

We can solve

$$
W=\sqrt{\frac{2 \varepsilon_{s}}{q}\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right) V_{b i}}
$$

